By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
flaping fin无人管理的水下车辆(UUV)推进系统为海军任务(例如监视和地形勘探)提供了高度机动性。最近的工作探索了时间序列神经网络替代模型的使用,以预测车辆设计和FIN运动学的推力。我们开发了一个基于搜索的逆模型,该模型利用运动学对神经网络模型进行控制系统设计。我们的反向模型找到了一组FIN运动学,其多目标目标是达到目标推力并在拍打周期之间创建平滑的运动学过渡。我们演示了整合此逆模型的控制系统如何使在线,周期周期调整以优先考虑不同的系统目标。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
在本文中,我们解决了单眼散景合成的问题,我们试图从单个全焦点图像中呈现浅深度图像。与DSLR摄像机不同,由于移动光圈的物理限制,这种效果无法直接在移动摄像机中捕获。因此,我们提出了一种基于网络的方法,该方法能够从单个图像输入中渲染现实的单眼散景。为此,我们根据预测的单眼深度图引入了三个新的边缘感知散景损失,该图在模糊背景时锐化了前景边缘。然后,使用对抗性损失对该模型进行固定,从而产生逼真的玻璃效果。实验结果表明,我们的方法能够在处理复杂场景的同时产生令人愉悦的自然散景效果,并具有锋利的边缘。
translated by 谷歌翻译
大气效应(例如湍流和背景热噪声)抑制了在开关键控自由空间光学通信中使用的相干光的传播。在这里,我们介绍并实验验证了卷积神经网络,以降低后处理中自由空间光学通信的位错误率,而自由空间光学通信的位比基于高级光学器件的现有解决方案明显简单,更便宜。我们的方法由两个神经网络组成,这是第一个确定在热噪声和湍流中存在相干位序列以及第二个解调相干位序列的存在。通过生成连贯的光线,将它们与热灯结合在一起,并通过湍流的水箱将其结合起来,通过生成开关的键入键流,可以通过实验获得我们网络的所有数据,从而获得了模拟的湍流,并将其传递给了最终的光线。高度准确性。我们的卷积神经网络提高了与阈值分类方案相比的检测准确性,并具有与当前解调和误差校正方案集成的能力。
translated by 谷歌翻译
最近的研究通过将基于Trimap的图像垫子的成功扩展到视频域,在视频垫子上取得了长足进展。在本文中,我们将此任务推向了更实用的设置,并提出了仅使用一个用户宣传的Trimap来强制执行视频底表的单个TRIMAP视频效果网络(OTVM)。 OTVM的一个关键是Trimap传播和α预测的关节建模。从基线构架传播和α预测网络开始,我们的OTVM将两个网络与alpha-Trimap修补模块结合在一起,以促进信息流。我们还提出了一种端到端培训策略,以充分利用联合模型。与先前的解耦方法相比,我们的联合建模极大地提高了三张式传播的时间稳定性。我们在两个最新的视频底变基准测试中评估了我们的模型,深度视频垫子和视频图108,以及优于大量利润率的最先进(MSE改善分别为56.4%和56.7%)。源代码和模型可在线获得:https://github.com/hongje/otvm。
translated by 谷歌翻译
尽管常规机器人系统中的每个不同任务都需要专用的场景表示形式,但本文表明,统一表示形式可以直接用于多个关键任务。我们提出了用于映射,进程和计划(LOG-GPIS-MOP)的log-gaussian过程隐式表面:基于统一表示形式的表面重建,本地化和导航的概率框架。我们的框架将对数转换应用于高斯过程隐式表面(GPIS)公式,以恢复全局表示,该表示可以准确地捕获具有梯度的欧几里得距离场,同时又是隐式表面。通过直接估计距离字段及其通过LOG-GPIS推断的梯度,提出的增量进程技术计算出传入帧的最佳比对,并在全球范围内融合以生成MAP。同时,基于优化的计划者使用相同的LOG-GPIS表面表示计算安全的无碰撞路径。我们根据最先进的方法验证了2D和3D和3D和基准测试的模拟和真实数据集的拟议框架。我们的实验表明,LOG-GPIS-MOP在顺序的音程,表面映射和避免障碍物中产生竞争结果。
translated by 谷歌翻译
大型语言模型可以编码有关世界的大量语义知识。这种知识对于旨在采取自然语言表达的高级,时间扩展的指示的机器人可能非常有用。但是,语言模型的一个重大弱点是,它们缺乏现实世界的经验,这使得很难利用它们在给定的体现中进行决策。例如,要求语言模型描述如何清洁溢出物可能会导致合理的叙述,但是它可能不适用于需要在特定环境中执行此任务的特定代理商(例如机器人)。我们建议通过预处理的技能来提供现实世界的基础,这些技能用于限制模型以提出可行且在上下文上适当的自然语言动作。机器人可以充当语​​言模型的“手和眼睛”,而语言模型可以提供有关任务的高级语义知识。我们展示了如何将低级技能与大语言模型结合在一起,以便语言模型提供有关执行复杂和时间扩展说明的过程的高级知识,而与这些技能相关的价值功能则提供了连接必要的基础了解特定的物理环境。我们在许多现实世界的机器人任务上评估了我们的方法,我们表明了对现实世界接地的需求,并且这种方法能够在移动操纵器上完成长远,抽象的自然语言指令。该项目的网站和视频可以在https://say-can.github.io/上找到。
translated by 谷歌翻译
Remote sensing imagery provides comprehensive views of the Earth, where different sensors collect complementary data at different spatial scales. Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a $5.0\%$ non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a $0.9$ mIoU to $3.8$ mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales.
translated by 谷歌翻译